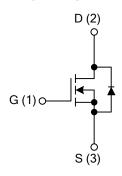
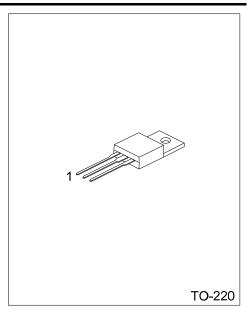


UNISONIC TECHNOLOGIES CO., LTD

80N08 Preliminary Power MOSFET

N-CHANNEL 80V (D-S) MOSFET

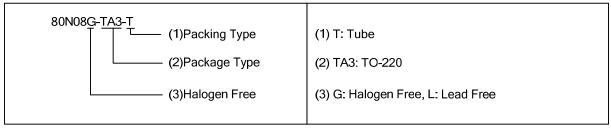

DESCRIPTION


The UTC **80N08** is an N-channel MOSFET using UTC trench technology. It can be used in applications, such as power supply (secondary synchronous rectification), industrial and primary switch etc.

■ FEATURES

- * Trench FET Power MOSFETS Technology
- * 100 % R_G and UIS Tested

■ SYMBOL



ORDERING INFORMATION

Ordering Number		Dockogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
80N08L-TA3-R	80N08G-TA3-R	TO-220	G	D	S	Tube	

Note: G: GND, D: Drain, S: Source

www.DataSheet4U.com

■ **ABSOLUTE MAXIMUM RATINGS** (T_J= 25 °C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT	
Continuous Prain Current (Note 1)		T _C =25 °C, V _{GS} =10 V	80	A	
Continuous Drain Current (Note 1)	I _D	T _C =100 °C, V _{GS} =10 V (Note 2)	80		
Pulsed Drain Current (Note 2)	$I_{D,pulse}$	T _C =25 °C	320	Α	
Avalanche Energy, Single Pulse (Note 2)	E _{AS}	I _D =80A	810	mJ	
Gate Source Voltage (Note 3)	V_{GS}		±20	V	
Power Dissipation	P _{TOT}	T _C =25 °C	300	W	
Junction Temperature	TJ		+150	°C	
Storage Temperature	T _{STG}		-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	K/W
Junction to Case	θ_{JC}	0.5	K/W

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =1mA, V _{GS} =0V				V		
Drain Course Leglage Current	I _{DSS}	V _{DS} =75V, V _{GS} =0V, T _J =25°C		0.01	1	μA		
Drain-Source Leakage Current		V_{DS} =75V, V_{GS} =0V, T_J =125°C 2		1	100			
Gate-Source Leakage Current	I_{GSS}	V _{DS} =0V, V _{GS} =20V		1	100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.1	3.0	4.0	V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =80A			12	mΩ		
DYNAMIC PARAMETERS (Note 2)								
Input Capacitance	C_{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		4700		pF		
Output Capacitance	Coss			1260		pF		
Reverse Transfer Capacitance	C_{RSS}			580		pF		
SWITCHING PARAMETERS (Note 2)								
Gate to Source Charge	Q_GS	V _{DD} =60V, V _{GS} =0~10V, I _D =80A		25	37	nC		
Gate to Drain Charge	Q_GD			69	116	nC		
Total Gate Charge	Q_G			144	180	nC		
Gate Plateau Voltage	$V_{plateau}$			5.4		V		
Turn-ON Delay Time	$t_{D(ON)}$	V_{DD} =40V, R _G =2.2 Ω I_{D} =80A, V _{GS} =10V		26		ns		
Rise Time	t_R			50		ns		
Turn-OFF Delay Time	$t_{D(OFF)}$			61		ns		
Fall-Time	t⊦			30		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current	Is	T _C =25°C (Note 2)			80	Α		
Pulsed Current	I _{S, pulse}				320			
Drain-Source Diode Forward Voltage (Note1)	V_{SD}	I _F =80A, V _{GS} =0V, T _J =25°C		0.9	1.3	V		
Reverse Recovery Time (Note 2)	t _{RR}	I _F = I _S , dI _F /dt=100A/µs		110	140	ns		
Reverse Recovery Charge (Note 2)	Q_{RR}	V _R =40V		470	590	nC		

www.DaNote: 14 Current is limited by bondwire; with an θ_{JC} = 0.5K/W the chip is able to carry 132A at 25°C.

- 2. Defined by design. Not subject to production test.
- 3. Qualified at -20V and +20V.

www.Dat

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

